
Elliptic Curves and Cryptography

Aleksandar Jurǐsić∗ Alfred J. Menezes†

March 23, 2005

Elliptic curves have been intensively studied in number theory and algebraic geome-

try for over 100 years and there is an enormous literature on the subject. To quote the

mathematician Serge Lang:

It is possible to write endlessly on elliptic curves. (This is not a threat.)

Elliptic curves also figured prominently in the recent proof of Fermat’s Last Theorem by

Andrew Wiles. Originally pursued for purely aesthetic reasons, elliptic curves have recently

been utilized in devising algorithms for factoring integers, primality proving, and in public-

key cryptography. In this article, we aim to give the reader an introduction to elliptic curve

cryptosystems (ECC), and to demonstrate why ECC provides relatively small block sizes,

high-speed software and hardware implementations, and offer the most security per key bit

of any known public-key scheme.

Introduction

Since the introduction of the concept of public-key cryptography by Whit Diffie and Martin

Hellman in 1976, the cryptographic importance of the apparent intractability of the well-

studied discrete logarithm problem has been recognized. Taher ElGamal first described

how this problem can be utilized in public-key encryption and digital signature schemes.

ElGamal’s methods have been refined and incorporated into various protocols to meet a

variety of applications, and one of its extensions forms the basis for the U.S. government

digital signature algorithm (DSA).

We begin by introducing some basic mathematical terminology. A group is an abstract

mathematical object consisting of a set G together with an operation * defined on pairs

of elements of G; the order of the group is the number of elements in G. The operation

∗Aleksandar received his Ph.D. in mathematics from the University of Waterloo (Canada) in 1994. He

works for Certicom Corp. (Canada), where he conducts research in cryptography. Aleksandar can be con-

tacted at ajurisic@certicom.ca.
†Alfred is a co-author, together with Paul van Oorschot and Scott Vanstone, of Handbook of Applied

Cryptography (CRC Press, 1996). He also is the author of Elliptic Curve Public Key Cryptosystems (Kluwer

Academic Publishers, 1993). Alfred is a professor of mathematics at Auburn University in Alabama, and

consults on a regular basis for Certicom Corp. He can be reached at menezal@mail.auburn.edu.

1

must have certain properties, similar to those we are familiar with from ordinary integer

arithmetic. For example, the integers modulo n, namely Zn = {0, 1, 2, . . . , n − 1}, forms

a group under the operation of addition modulo n. If p is a prime number, then the non-

zero elements of Zp, namely Z
∗
p = {1, 2, . . . , p − 1}, forms a group under the operation of

multiplication modulo p. The order of a group element g ∈ G is the least positive integer n

such that gn = 1. For example, in the group Z
∗
11, the element g = 3 has order 5, since

31 ≡ 3 (mod 11),

32 ≡ 9 (mod 11),

33 ≡ 5 (mod 11),

34 ≡ 4 (mod 11), and

35 ≡ 1 (mod 11).

The discrete logarithm problem, as first employed by Diffie and Hellman in their key

agreement protocol, was defined explicitly as the problem of finding logarithms in the group

Z
∗
p: given an element g ∈ Z

∗
p of order n, and given h ∈ Z

∗
p, find an integer x, 0 ≤ x ≤ n− 1,

such that gx ≡ h (mod p), provided that such an integer exists. The integer x is called the

discrete logarithm of h to the base g. For example, consider p = 17. Then g = 10 is an

element of order n = 16 in Z
∗
17. If h = 11, then the discrete logarithm of h to the base g is

13 because 1013 ≡ 11 (mod 17).

These concepts can be extended to arbitrary groups. Let G be a group of order n, and

let α be an element of G. The discrete logarithm problem for G is the following: given

elements α and β ∈ G, find an integer x, 0 ≤ x ≤ n − 1, such that αx = β, provided that

such an integer exists.

A variety of groups have been proposed for cryptographic use. There are two primary

reasons for this. Firstly, the operation in some groups may be easier to implement in software

or in hardware than the operation in other groups. Secondly, the discrete logarithm problem

in the group may be harder than the discrete logarithm problem in Z
∗
p. Consequently, one

could use a group G that is smaller than Z
∗
p while maintaining the same level of security.

This results is smaller key sizes, bandwidth savings, and faster implementations, features

which are especially attractive for security applications where computational power and

integrated circuit space is limited, such as smart cards, PC-cards, and wireless devices.

Such is the case with elliptic curve groups, which were first proposed for cryptographic use

by Neal Koblitz and Victor Miller in 1985.

The Digital Signature Algorithm (DSA)

The DSA was proposed in August of 1991 by the U.S. National Institute of Standards and

Technology (NIST) and became a U.S. Federal Information Processing Standard (FIPS 186)

in 1993. It was the first digital signature scheme to be legally recognized by a government.

The algorithm is a variant of the ElGamal signature scheme. It exploits small subgroups in

Z
∗
p in order to decrease the size of signatures.

2

DSA key generation. Each entity A does the following:

1. Select a prime q such that 2159 < q < 2160.

2. Select a 1024-bit prime number p with the property that q | p − 1.

3. Select an element h ∈ Z
∗
p and compute g = h(p−1)/q mod p; repeat until g 6= 1. (g is

a generator of the unique cyclic group of order q in Z
∗
p.)

4. Select a random integer x in the interval [1, q − 1].

5. Compute y = gx mod p.

6. A’s public key is (p, q, g, y); A’s private key is x.

DSA signature generation. To sign a message m, A does the following:

1. Select a random integer k in the interval [1, q − 1].

2. Compute r = (gk mod p) mod q.

3. Compute k−1 mod q.

4. Compute s = k−1{h(m)+xr} mod q, where h is the Secure Hash Algorithm (SHA-1).

5. If s = 0 then go to step 1. (If s = 0, then s−1 mod n does not exist; s−1 is required

in step 2 of signature verification.)

6. The signature for the message m is the pair of integers (r, s).

DSA signature verification. To verify A’s signature (r, s) on m, B should do the following:

1. Obtain an authentic copy of A’s public key (p, q, g, y).

2. Compute w = s−1 mod q and h(m).

3. Compute u1 = h(m)w mod q and u2 = rw mod q.

4. Compute v = (gu1yu2 mod p) mod q.

5. Accept the signature if and only if v = r.

Since r and s are each integers less than q, DSA signatures are 320 bits in length. The

security of the DSA relies on two distinct but related discrete logarithm problems. One

is the discrete logarithm problem in Z
∗
p where the number field sieve algorithm applies.

Since p is a 1024-bit prime, the DSA is currently not vulnerable to this attack. The second

discrete logarithm problem works to the base g: given p, q, g, and y, find x such that y ≡ gx

(mod p). For large p (e.g. 1024-bits), the best algorithm known for this problem is known

as the Pollard rho-method, and takes about
√

πq/2 steps. Since q ≈ 2160, the DSA is not

vulnerable to this attack.

3

Background in elliptic curves

We proceed now to give a quick introduction to the fascinating theory of elliptic curves.

For simplicity, we shall restrict our attention to elliptic curves over Zp, where p is a prime

greater than 3. We mention though that elliptic curves can more generally be defined over

any finite field. In particular, the so-called characteristic two finite fields F2m are of special

interest since they lead to the most efficient implementation of the elliptic curve arithmetic.

An elliptic curve E over Zp is defined by an equation of the form

y2 = x3 + ax + b, (1)

where a, b ∈ Zp, and 4a3 + 27b2 6≡ 0 (mod p), together with a special point ∞, called the

point at infinity. The set E(Zp) consists of all points (x, y), x ∈ Zp, y ∈ Zp, which satisfy

the defining equation (??), together with ∞.

An example

Let p = 23 and consider the elliptic curve E : y2 = x3 + x + 1 defined over Z23. (In the

notation of equation (??), we have a = 1 and b = 1.) Note that 4a3 +27b2 = 4+4 = 8 6= 0,

so E is indeed an elliptic curve. The points in E(Z23) are ∞ and the following:

(0, 1) (6, 4) (12, 19)

(0, 22) (6, 19) (13, 7)

(1, 7) (7, 11) (13, 16)

(1, 16) (7, 12) (17, 3)

(3, 10) (9, 7) (17, 20)

(3, 13) (9, 16) (18, 3)

(4, 0) (11, 3) (18, 20)

(5, 4) (11, 20) (19, 5)

(5, 19) (12, 4) (19, 18)

Addition Formula

There is a rule for adding two points on an elliptic curve E(Zp) to give a third elliptic curve

point. Together with this addition operation, the set of points E(Zp) forms a group. It is

this group that is used in the construction of elliptic curve cryptosystems. The addition

rule, which can be explained geometrically, is presented below as a sequence of algebraic

formulae.

1. P + ∞ = ∞ + P = P for all P ∈ E(Zp).

2. If P = (x, y) ∈ E(Zp), then (x, y) + (x,−y) = ∞. (The point (x,−y) is denoted by

−P , and is called the negative of P ; observe that −P is indeed a point on the curve.)

4

3. Let P = (x1, y1) ∈ E(Zp) and Q = (x2, y2) ∈ E(Zp), where P 6= −Q. Then P + Q =

(x3, y3), where

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3) − y1,

and

λ =

y2 − y1

x2 − x1
if P 6= Q

3x2
1 + a

2y1
if P = Q.

Example of elliptic curve addition

Consider the elliptic curve defined in the previous example.

1. Let P = (3, 10) and Q = (9, 7). Then P + Q = (x3, y3) is computed as follows:

λ =
7 − 10

9 − 3
=

−3

6
=

−1

2
= 11 ∈ Z23,

x3 = 112 − 3 − 9 = 6 − 3 − 9 = −6 ≡ 17 (mod 17), and

y3 = 11(3 − (−6)) − 10 = 11(9) − 10 = 89 ≡ 20 (mod 17).

Hence P + Q = (17, 20).

2. Let P = (3, 10). Then 2P = P + P = (x3, y3) is computed as follows:

λ =
3(32) + 1

20
=

5

20
=

1

4
= 6 ∈ Z23,

x3 = 62 − 6 = 30 ≡ 7 (mod 23), and

y3 = 6(3 − 7) − 10 = −24 − 10 = −11 ≡ 12 (mod 23).

Hence 2P = (7, 12).

For historical reasons, the group operation for an elliptic curve E(Zp) has been called

addition. By contrast, the group operation in Z
∗
p is multiplication. The differences in the

resulting additive notation and multiplicative notation can sometimes be confusing. Table 1

shows the correspondence between notation used for the two groups Z
∗
p and E(Zp).

The Elliptic Curve Digital Signature Algorithm (ECDSA)

ECDSA is the elliptic curve analogue of the DSA. That is, instead of working in a subgroup

of order q in Z
∗
p, we work in an elliptic curve group E(Zp). The ECDSA is currently begin

considered by the ANSI X9F1 and IEEE P1363 standards committees as a digital signature

5

Group Z
∗
p E(Zp)

Group Integers Points (x, y) on E

elements {1, 2, . . . , p − 1} plus ∞

Group multiplication addition

operation modulo p of points

Notation Elements: g, h Elements: P , Q

Multiplication: g · h Addition: P + Q

Inverse: g−1 Negative: −P

Division: g/h Subtraction: P − Q

Exponentiation: ga Multiple: aP

Discrete Given g ∈ Z
∗
p Given P ∈ E(Zp)

Logarithm and h = ga mod p, and Q = aP ,

Problem find a find a.

Table 1: Correspondence between Z
∗
p and E(Zp) notation.

DSA notation ECDSA notation

q n

g P

x d

y Q

Table 2: Correspondence between DSA and ECDSA notation.

6

standard. Table 1 shows the correspondence between some math notation used in DSA and

ECDSA. Using Tables 1 and 2, the analogies between the DSA and ECDSA should be more

apparent.

ECDSA key generation. Each entity A does the following:

1. Select an elliptic curve E defined over Zp. The number of points in E(Zp) should be

divisible by a large prime n.

2. Select a point P ∈ E(Zp) of order n.

3. Select a random integer d such that [2, n − 2].

4. Compute Q = dP .

5. A’s public key is (E,P, n,Q); A’s private key is d.

ECDSA signature generation. To sign a message m, A does the following:

1. Select a random integer k in the interval [2, n − 2].

2. Compute kP = (x1, y1) and r = x1 mod n. (Here x1 is regarded as an integer, for

example by conversion from its binary representation.)

If r = 0 then go to step 1. (This is a security condition: if r = 0, then the signing

equation s = k−1{h(m) + dr} mod n does not involve the private key d!)

3. Compute k−1 mod n.

4. Compute s = k−1{h(m)+dr} mod n, where h is the Secure Hash Algorithm (SHA-1).

5. If s = 0 then go to step 1. (If s = 0, then s−1 mod n does not exist; s−1 is required

in step 2 of signature verification.)

6. The signature for the message m is the pair of integers (r, s).

ECDSA signature verification. To verify A’s signature (r, s) on m, B should do the following:

1. Obtain an authentic copy of A’s public key (E,P, n,Q). Verify that r and s are

integers in the interval [1, n − 1].

2. Compute w = s−1 mod n and h(m).

3. Compute u1 = h(m)w mod n and u2 = rw mod n.

4. Compute u1P + u2Q = (x0, y0) and v = x0 mod n.

5. Accept the signature if and only if v = r.

7

The only significant difference between ECDSA and DSA is in the generation of r. The

DSA does this by taking the random element (gk mod p) and reducing it modulo q, thus

obtaining an integer in the interval [1, q − 1]. The ECDSA generates the integer r in the

interval [1, n−1] by taking the x-coordinate of the random point kP and reducing it modulo

n.

To obtain a security level similar to that of the DSA, the parameter n should have about

160 bits. If this is the case, then DSA and ECDSA signatures have the same bitlength (320

bits).

Instead of each entity generating its own elliptic curve, the entities may elect to use the

same curve E and point P of order n. In this case, an entity’s public key consists only of

the point Q. This results in public keys of smaller sizes. Additionally, there are techniques

whereby the point Q = (xQ, yQ) can be efficiently constructed from its x-coordinate xQ and

a specific bit of the y-coordinate yQ. Thus, for example, if p ≈ 2160 (so elements in Zp are

160-bit strings), then public keys can be represented as 161-bit strings.

Security issues

The basis for the security of elliptic curve cryptosystems such as the ECDSA is the apparent

intractability of the following elliptic curve discrete logarithm problem (ECDLP): given an

elliptic curve E defined over Zp, a point P ∈ E(Zp) of order n, and a point Q ∈ E(Zp),

determine the integer l, 0 ≤ l ≤ n − 1, such that Q = lP , provided that such an integer

exists.

Over the past eleven years, the ECDLP has been received considerable attention from

leading mathematicians around the world, and no significant weaknesses have been reported.

An algorithm due to Pohlig and Hellman reduces the determination of l to the determination

of l modulo each of the prime factors of n. Hence, in order to achieve the maximum

possible security level, n should be prime. The best algorithm known to date for the

ECDLP in general is the Pollard rho-method which takes about
√

πn/2 steps, where a step

here is an elliptic curve addition. In 1993, Paul van Oorschot and Michael Wiener showed

how the Pollard rho-method can be parallelized so that if r processors are used, then the

expected number of steps by each processor before a single discrete logarithm is obtained

is (
√

πn/2)/r.

Software attacks

We assume that a MIPS (Million Instructions Per Second) machine can perform 4 × 104

elliptic curve additions per second. (This estimate is indeed conservative – an application-

specific integrated circuit (ASIC) for performing elliptic curve operations over the field F2155

has a 40 MHz clock-rate and can perform roughly 40,000 elliptic operations per second.)

Then the number of elliptic curve additions that can be performed by a 1 MIPS machine

8

in one year is

(4 × 104) · (60 × 60 × 24 × 365) ≈ 240.

Table ?? shows, for various values of n, the computing power required to compute a single

discrete logarithm using the Pollard ρ-method.

Field size Size of n
√

πn/2 MIPS years

(in bits) (in bits)

155 150 275 3.8 × 1010

210 205 2103 7.1 × 1018

239 234 2117 1.6 × 1023

Table 3: Computing power to compute elliptic curve logarithms with the Pollard ρ-method.

For instance, if 10,000 computers each rated at 1,000 MIPS are available, and n ≈ 2150,

then an elliptic curve discrete logarithm can be computed in 3,800 years. Andrew Odlyzko

has estimated that if 0.1% of the world’s computing power were available for one year to

work on a collaborative effort to break some challenge cipher, then the computing power

available would be 108 MIPS years in 2004 and 1010 – 1011 MIPS years in 2014.

To put the numbers in Table ?? in some perspective, Table ?? (due to Odlyzko shows the

estimated computing power required to factor integers with current versions of the general

number field sieve.

Size of n MIPS years

(in bits)

512 3 × 104

768 2 × 108

1024 3 × 1011

1280 1 × 1014

1536 3 × 1016

2048 3 × 1020

Table 4: Computing power required to factor integers using the general number field sieve.

Hardware attacks

A more promising attack (for well-funded attackers) on elliptic curve systems would be to

build special-purpose hardware for a parallel search using the Pollard rho-method. Van

Oorschot and Wiener provide a detailed study of such a possibility. They estimated that if

n ≈ 1036 ≈ 2120, then a machine with m = 325, 000 processors that could be built for about

$10 million would compute a single discrete logarithm in about 35 days.

9

Discussion

It should be pointed out that in the software and hardware attacks described above, com-

putation of a single elliptic curve discrete logarithm has the effect of revealing a single user’s

private key. The same effort must be repeated in order to determine another user’s private

key.

Blaze et al. reported on the minimum key lengths required for secure symmetric-key en-

cryption schemes (such as DES and IDEA). Their report comes to the following conclusion:

To provide adequate protection against the most serious threats – well-funded

commercial enterprises or government intelligence agencies – keys used to protect

data today should be at least 75 bits long. To protect information adequately

for the next 20 years in the face of expected advances in computing power, keys

in newly-deployed systems should be at least 90 bits long.

Extrapolating these conclusions to the case of elliptic curves, we see that n should be at

least 150 bits for short-term security and at least 180 bits for medium-term security. This

extrapolation is justified by the following considerations:

1. Exhaustive search through a k-bit symmetric key cipher takes about the same time

as the Pollard rho-algorithm applied to an elliptic curve having a 2k-bit parameter n.

2. Both exhaustive search with a symmetric-key cipher and the Pollard rho-algorithm

can be parallelized with a linear speedup.

3. A basic operation with elliptic curves (addition of two points) is computationally more

expensive than a basic operation in a symmetric key cipher (encryption of one block).

4. In both symmetric-key ciphers and elliptic curve systems, a “break” has the same

effect: it recovers a single private key.

Implementation issues

Since the elliptic curve discrete logarithm problem appears to be harder that the discrete

logarithm problem in Z
∗
p (or the problem of factoring a composite integer n), one can use

an elliptic curve group that is significantly smaller that Z
∗
p (respectively, n). For example,

an elliptic curve E(Zp) with a point P ∈ E(Zp) whose order is a 160-bit prime offers

approximately the same level of security as DSA with a 1024-bit modulus p and RSA with

a 1024-bit modulus n.

In order to get a rough idea of the computational efficiency of elliptic curve systems, let

us compare the times to compute

(i) kP where P ∈ E(Zp), E is a non-supersingular curve, p ≈ 2160, and k is a random

160-bit integer (this is an operation in ECDSA); and

10

(ii) gk mod p, where p is a 1024-bit prime and k is a random 160-bit integer (this is an

operation in DSA).

Let us assume that a field multiplication in Zp, where log2 p = l, takes l2 bit operations;

then a modular multiplication in (ii) takes (1024/160)2 ≈ 41 times longer than a field

multiplication in (i). Now, computing kP by repeated doubling and adding requires on

average 160 elliptic curve additions and 80 elliptic curve doublings. From the addition

formula we see that an elliptic curve addition or doubling requires 1 field inversion and

2 field multiplications. (The cost of field addition is negligible, as is the cost of a field

squaring if the field F2m is used instead of Zp.) Assume also that the time to perform a

field inversion is equivalent to that of 3 field multiplications (this is what has been reported

in practice for the case of F2m). Then, computing kP requires the equivalent of 1200 field

multiplications, or 1200/41 ≈ 29 1024-bit modular multiplications. On the other hand,

computing gk mod p by repeated squaring and multiplying requires on average 240 1024-bit

modular multiplications. Thus, the operation in (i) can be expected to be about 8 times

faster than the operation in (ii). It must be emphasized that such a comparison is indeed

very rough, as it does not take into account the various enhancements that are possible

for each system. Since multiplication in F2m is in fact substantially faster than modular

multiplication in Z
∗
p, even more impressive speedups can be realized in practice.

Another important consequence of using a smaller group in elliptic curve systems is that

low-cost implementations are feasible in restricted computing environments, such as smart

cards and cellular telephones. For example, an ASIC built for performing elliptic curve

operations over the field F2155 (see Agnew, Mullin, and Vanstone [??]) has only 12,000 gates

and would occupy less that 5% of the area typically designated for a smart card processor.

By comparison, a chip designed to do modular multiplication of 512-bit numbers (see Ivey

et al. [??]) has about 50,000 gates, while the chip designed to do field multiplications in

F2593 (see Agnew et al. [??]) has about 90,000 gates.

Another advantage of elliptic curve systems is that the underlying field (Zp or F2m)

and a representation for its elements can be selected so that the field arithmetic (addition,

multiplication, and inversion) can be optimized. This is not the case for systems based on

discrete log (respectively, integer factorization), where the prime modulus p (respectively,

the composite modulus n) should not be chosen to have a special form because this might

render the underlying problem easy.

Standards activities

The two primary objectives of industry standards are to promote interoperability and to

facilitate widespread use of well-accepted techniques. Standards for elliptic curve systems

are currently being drafted by various accredited standards bodies around the world; some of

this work is summarized below. As these drafts become officially adopted by the appropriate

11

standards bodies, one can expect elliptic curve systems to be widely used by providers of

information security.

1. Elliptic curve systems are being drafted in two work items by the American National

Standards Institute (ANSI) X9 (Financial Services) working group: ANSI X9.62, The

Elliptic Curve Digital Signature Algorithm (ECDSA); and ANSI X9.63, Elliptic Curve

Key Agreement Protocols.

2. Elliptic curves are in the draft IEEE P1363 standard (Standard for Public Key Cryp-

tography), which includes encryption, signature, and key agreement mechanisms. El-

liptic curves over Zp and over F2m are both supported. For the case of F2m , polynomial

bases and normal bases of F2m over an arbitrary subfield F2l are supported. P1363

also specifies discrete log systems (in subgroups of the multiplicative group of the

integers modulo a prime) and RSA encryption and signatures. The latest drafts are

available from the web site http://stdsbbs.ieee.org/.

3. The OAKLEY Key Determination Protocol of the Internet Engineering Task Force

(IETF) describes a key agreement protocol that is a variant of the Diffie-Hellman pro-

tocol. It allows for a variety of groups to be used, including elliptic curves over Zp and

F2m . The document makes specific mention of elliptic curve groups over the fields F2155

and F2210 . A draft is available from the web site http://www.ietf.cnri.reston.va.us/.

4. The draft document ISO/IEC 14888: Digital signature with appendix – Part 3:

Certificate-based mechanisms specifies elliptic curve analogues of some ElGamal-like

signature algorithms.

5. The ATM Forum Technical Committee’s Phase I ATM Security Specification draft

document aims to provide security mechanisms for ATM (Asynchronous Transfer

Mode) networks. Security services provided include confidentiality, authentication,

data integrity, and access control. A variety of systems are supported, including RSA,

DSA, and elliptic curve systems.

Conclusions

Elliptic curve cryptosystems offer the most security per key-bit of any known public-key

system. With a 160-bit modulus, an elliptic curve systems offers the same level of cryp-

tographic security as DSA or RSA with 1024-bit moduli. The smaller key sizes result in

smaller system parameters, smaller public-key certificates, bandwidth savings, faster imple-

mentations, lower power requirements, and smaller hardware processors.

12

Further reading

For an accessible introduction to all aspects of cryptography, check out Schneier’s book

[??]. Stinson’s book [??] is an excellent textbook. The recent handbook by Menezes, van

Oorschot, and Vanstone [??] is an extensive source book on cryptography for practitioners.

Elliptic curve cryptosystems were introduced in the papers of Koblitz [??] and Miller[??].

Chapter 6 of Koblitz’s book [??] provides an introduction to elliptic curve and elliptic curve

systems. Koblitz’s book also covers the relevant number theory algorithm including the

Pollard rho-method. The parallelization of the Pollard rho-method is described in [??]. For

a more detailed account on various implementation and security issues, consult Menezes’

book [??].

Finally, we mention the Information Security Classroom at Certicom’s web site

http://www.certicom.ca. The information presented there was designed to instruct peo-

ple of various mathematical backgrounds, and include some nifty Java applets which illus-

trate the theory of elliptic curves.

References

1. G. Agnew, R. Mullin, I. Onyszchuk and S. Vanstone. “An implementation for a fast

public-key cryptosystem”, Journal of Cryptology, 3 (1991), 63-79.

2. G. Agnew, R. Mullin and S. Vanstone, “An implementation of elliptic curve cryptosys-

tems over F2155”, IEEE Journal on Selected Areas in Communications, 11 (1993),

804-813.

3. P. Ivey, S. Walker, J. Stern and S. Davidson, “An ultra-high speed public key encryp-

tion processor”, Proceedings of IEEE Custom Integrated Circuits Conference, Boston,

1992, 19.6.1 – 19.6.4.

4. N. Koblitz, “Elliptic curve cryptosystems”, Mathematics of Computation, 48 (1987),

203-209.

5. N. Koblitz, A Course in Number Theory and Cryptography, 2nd edition, Springer-

Verlag, 1994.

6. A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers,

1993.

7. A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography,

CRC Press, 1996.

8. V. Miller, “Uses of elliptic curves in cryptography”, Advances in Cryptology – CRYPTO

’85, Lecture Notes in Computer Science, 218 (1986), Springer-Verlag, 417-426.

13

9. National Institute for Standards and Technology, “Digital signature standard”, FIPS

Publication 186, 1993. Available from http://csrc.ncsl.nist.gov/fips/.

10. A. Odlyzko, “The future of integer factorization”, CryptoBytes – The technical newslet-

ter of RSA Laboratories, volume 1, number 2, Summer 1995, 5-12. Also available from

http://www.rsa.com/.

11. M. Blaze, W. Diffie, R. Rivest, B. Schneier, T. Shimomura, E. Thompson, and M.

Wiener, “Minimal key lengths for symmetric ciphers to provide adequate commercial

security”, January 1996, available from

http://theory.lcs.mit.edu/ rivest/publications.html.

12. B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd

edition, Wiley, 1996.

13. D. Stinson, Cryptography – Theory and Practice, CRC Press, 1995.

14. P. van Oorschot and M. Wiener, “Parallel collision search with cryptanalytic applica-

tions”, to appear in Journal of Cryptology.

14

